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ABSTACT 
The development of an intelligent system for the establishment of relationship between input parameters and the 

responses utilizing both reverse and forward modeling of artificial neural networks is the main objective of the 

present research work.  Prediction of quality characteristics such as front width, back width, front height and 

back height of the weld bead geometry in Tungsten Inert Gas welding process of AA5083; H111 Aluminum 

alloy is the aim in forward modeling from known set of process parameters such as current, %balance, welding 

speed, arc gap, gas flow rate, and frequency. Reverse modeling meets the industrial requirements of automatic 

welding to predict the recommended weld bead geometry characteristics. Comprehensive approach for the 

development of two back propagation networks viz. feed forward back propagation (FFBP) and Elman back 

propagation (EBP) neural networks is adopted. 212 Face centered central composite design based experimental 

data is utilized for the development of both supervised learning networks with batch mode training approach. A 

comparison of performance of FFBPP and EBP neural networks are made with that of stepwise multiple 

regression statistical modeling. Analysis of results showed that both neural network modeling outperformed the 

statistical approach in making better predictions and the models are efficient in selection of parameters 

effectively for the desired responses. FFBP performance found to marginally better than that of EBP neural 

network. Also the forward modeling performance was better than that of reverse modeling in both neural 

networks. 

Key Words: Artificial Neural Networks, TIG welding, weld bead Characteristics, forward feed back 

propagation (FFBP) & Elman Back Propagation (EBP) Networks. 

    

 

I. INTRODUCTION 
Some of the quality requirements such as 

corrosion resistance, high strength to weight ratio, 

toughness and formability have made aluminum as 

the best material in most of the fabrication 

industries. One of the aluminum alloy, AA5083 ; 

H111 famously known as pressure vessel alloy and  

strongest non heat treated wrought alloy finds lot of 

application in cryogenic  corrosion resistant 

applications, low temperature transport vessels & 

radioactive water waste tanks fabrication, ship 

building and general transport vehicles industries. 

TIG welding because of its superior weld quality 

plays an important role in modern manufacturing 

especially in aerospace, automobile and ship 

building industries. TIG welding is utilized for the 

welding of aluminum, magnesium, stainless steel 

and titanium materials. The heat generated by the 

electric arc established between the tungsten 

electrode and the base metal with inert-gas 

shielding produces the coalescence. As it plays an 

important role in determining the mechanical 

properties of weldment, the weld bead geometry 

strongly characterizes the final quality of the TIG 

welding. Welding process parameters such as 

current, welding speed, stand-off distance and gas 

flow rate affect the quality of weld bead geometry. 

The weld bead geometry parameters may include 

front width, back width, front height, back height, 

penetration, and HAZ etc. This clearly indicates the 

complex, multivariate, multi response nature of the 

TIG welding process. The literature confirms TIG 

welding as highly non linear and strongly coupled 

process with never ending interest in researching 

for input-output relations to obtain high level of 

quality under different circumstances. A 

manufacturing process like TIG welding needs to 

be automated to ensure both high productivity and 

good quality which in turn requires a proper tested 

model. Many researchers have applied different 

statistical techniques successfully for this purpose. 

But the automation of any process requires input-

output relationships to be known in both forward 

and reverse directions. As the transformation 

RESEARCH ARTICLE                                 

OPEN ACCESS 



Suneel RamachandraJoshi  Int. Journal of Engineering Research and Application        www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 5, ( Part -7) may2016, pp.98-111 
 

 www.ijera.com                                                                                                                                   99 | P a g e  

matrix turns singular and might not be invertible 

always, the backward prediction i.e. determination 

of process parameters to predict the desired 

outputs, might become difficult through the 

conventional statistical techniques. Soft computing 

techniques like neural networks (NN), genetic 

algorithms(GA) and Fuzzy logic(FL) etc. have 

made the generation of an integrated system that 

estimates two or more responses simultaneously 

and reverse prediction modeling , a possibility. In 

recent past, application of neural networks for 

modeling input - output relationships for 

complicated manufacturing processes like casting, 

machining and various welding processes has 

started to replace the earlier statistical techniques. 

This is due to the shear ability of neural networks 

to learn and generalize (interpolate) the 

complicated input-output relations. Several 

researchers have attempted to use neural networks 

for various welding process modeling  

 

II. LITERATURE SERVEY 
T.G Lim, and H.S cho, [1] proposed a 

neural network model for the estimation of Weld 

pool sizes in GMA welding of 200×60×4 hot rolled 

AISI 1025 Plates. Utilizing the variable polarity 

plasma arc data of aluminum welding, 

George.E.Cook, Robert Joel Barnett, Kristinn 

Andersen, and Alvin M Strauss, [2] used artificial 

neural networks (ANN) in its modeling, analysis & 

control application.  S.C. Juang, Y.S.Tarng, and 

H.R. Lii, [3] described both back-propagation 

(BPNN) and counter-propagation (CPNN) 

networks for modeling TIG Welding process of 

pure Aluminum 1100 sheet of 1.6mm with a single 

pass with reasonable  accuracy & found BPNN 

with better generalization & CPNN with better 

learning ability. . Kim et al [4] proposed two 

different neural networks using two different 

training algorithms for predicting the weld bead 

width as a function of key process parameters and 

found Lavenberg-Marquardt algorithm to perform 

better over error back propagation. . D.S Nagesh & 

Datta [5] explored the use of Back Propagation 

Neural Network to model SMAW process of grey 

C.I plates with M.S electrodes to relate welding 

process variables with bead geometry. The network 

achieved good agreement with the training data & 

yielded satisfactory generalization. . Parikshit 

Dutta, and Dilip Kumar Pratihar [6] proposed two 

neural network-based approaches (i.e., back-

propagation neural network and genetic-neural 

system) Both the NN-based approaches were found 

to be more adaptive compared to the conventional 

regression analysis, for the test cases. Genetic-

neural (GA-NN) system outperformed the BPNN 

in most of the test cases (but not all). Taking the 

results of submerged arc welding process from 

V.Gunarajan & N.Murugan, K.Manikya Kanti, and 

P.Shrinivasa Rao [7] developed back propagation 

neural network model for the prediction of weld 

bead geometry in pulsed gas metal arc welding 

process with correlation coefficient of 0.99. 

Amarnath & Pratihar [8] solved forward and 

reverse mapping problems of the tungsten inert gas 

(TIG) welding process using radial basis function 

neural networks (RBFNNs). Nagesha & Datta[9] 

developed a back-propagation neural network & 

Ganetic algorithm to optimize the process 

parameters for front height to front width ratio and 

back height to back width ratio yielded satisfactory 

results and it is felt that  these  are powerful tools 

for analysis and modeling of TIG welding process. 

Vidyut Dey,Dilip Kumar Pratihar, and G.L.Datta 

[10] could find back – propagation neural network 

(BPNN) to show better performance than genetic- 

neural (GA-NN) in predicting the bead profiles in 

Electron beam bead on plates welding. Y.S.Tarng, 

J.L.Wu, S.S. Yeh, and S.C. Juang [11] described 

application of Neural Network & Simulated 

annealing (SA) algorithm to model & optimize the 

GTAW process of pure 1.6mm aluminum 1100 

sheet. As CPN is equipped with good learning 

ability, CPN is selected to model the process & SA 

applied to search for welding process    parameter 

with optimal weld pool features Ghosh and Sarkar 

[12] have proposed a neural network model to 

predict the yield characteristics of submerged arc 

weldments. R.J.Praga-Alejo,L.M.Torres-Trevino, 

and M.R.Pina-Monarrez [13] found the 

performance of neural network plus GA algorithm 

a little better than response surface methodology 

with canonical analysis. R.P.Singh, R.C.Gupta, and 

S.C.Sarkar [14] used artificial neural network 

technique to predict the tensile strength of weld for 

the given welding parameters. I.U. Abhulimen & 

J.I. Achebo[15] used Artificial neural network in 

the prediction and optimization of the Tungsten 

inert gas weld of mild steel pipes. Neural network 

model was generated using the Levenberg-

Marquardt algorithm with feed ward back 

propagation learning rule. Results show that the 

generated neural network model was able to predict 

tensile and yield strength to a mean square error of 

34.2. K. Anand [16] utilized neural networks for 

predicting the friction welding process parameters 

to weld Incoloy 800H.Lin & Chou [17] adopted 

neural network with a Levenberg - Marquardt 

back-propagation (LMBP) algorithm was then 

adopted to develop the relationships between the 

welding process parameters and the tensile-shear 

strength of each weldment  

The literature survey revealed absence of a 

comprehensive and efficient neural network 

modeling process with limited application in 

reverse modeling and comparison of various 
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learning, training algorithms and transfer functions 

was found not adopted for better model 

development. The application of Elman back 

propagation neural network was rare in weld 

process modeling as per literature survey. The 

present research work provides a comprehensive 

method for developing two different backward 

propagation neural networks, feed forward back 

propagation and Elman back propagation, both in 

forward & reverse modeling and the comparison of 

their performance in reverse modeling along with 

the comparison of their performance in forward 

mapping with stepwise regression modeling 

performance by taking into account of upper said 

findings in the development of neural network 

models. 

 

III. EXPERIMENTAL PROCEDURE 
Response surface methodology (RSM) 

based design of experiment, Face centered central 

composite design with 53 total runs comprising of 

32 half factorial points plus 9 center points and 12 

star points was employed for conducting the 

experiments. The experiment was conducted as per 

the above design matrix available in MINITAB 16 

at random to take care of systematic errors 

infiltration. The experimentation is carried out in 

the fabrication shop of Siddhivinayak fabricators, 

Bengaluru. Single pass autogenous bead on plate 

welding procedure is followed to simulate tight butt 

joint welding on 5 mm thick AA 5083; H111 

aluminum alloy with current, % balance, welding 

speed arc gap, shielding gas flow rate and 

frequency as process parameters and front 

width(FW), back width(BW), front height(FH), 

back height(BH) as weld bead characteristics 

(responses). The welding of plate is carried out 

normal to the rolled direction. A gas mixture of 

75% Helium and 25% Argon is used as shielding 

gas along with 0.2% Zirconiated tungsten rod of 

3.2 mm diameter as electrode. To simulate the 

actual robot welding operation the welding torch 

was made to move along the precise aluminum 

railings pertaining to ESAB automatic gas cutter 

.The experiment was conducted by varying the 

current in the range of 145-185 ampere , the % 

balance in the range of 32-68 % , the gap in the 

range of 1.5-2 mm , welding speed in the range of 

230-330 mm/min, the gas flow rate in the range of 

15-20 L/min and frequency in the range of 30-110 

Hz. The experimental set up is shown in Figure 1.  

Then the weld bead geometry quality 

characteristics such as, were measured in 

millimeters using Project profilometer after 

preparing specimen following the standard 

metallographic procedures. Four replicates are 

taken for each run totaling 212 input data. 

 

      
Fig. 1: Experimental set up of TIG welding process 

 

Table 1: Design matrix with input parameters at ctual values [23] 
RUNS Current % balance gap speed Flow. Rate Frequency 

DP41 165 50 1.75 280 15 70 

DP13 145 32 2 330 15 30 

DP22 185 32 2 230 20 110 

DP43 165 50 1.75 280 17.5 30 

DP50 165 50 1.75 280 17.5 70 

DP37 165 50 1.5 280 17.5 70 

DP8 185 68 2 230 15 110 

DP44 165 50 1.75 280 17.5 110 

DP51 165 50 1.75 280 17.5 70 

DP35 165 32 1.75 280 17.5 70 
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DP6 185 32 2 230 15 30 

DP23 145 68 2 230 20 110 

DP25 145 32 1.5 330 20 30 

DP14 185 32 2 330 15 110 

DP10 185 32 1.5 330 15 30 

DP9 145 32 1.5 330 15 110 

DP46 165 50 1.75 280 17.5 70 

DP42 165 50 1.75 280 20 70 

DP40 165 50 1.75 330 17.5 70 

DP19 145 68 1.5 230 20 30 

DP48 165 50 1.75 280 17.5 70 

DP28 185 68 1.5 330 20 30 

DP33 145 50 1.75 280 17.5 70 

DP24 185 68 2 230 20 30 

DP31 145 68 2 330 20 30 

DP36 165 68 1.75 280 17.5 70 

DP18 185 32 1.5 230 20 30 

DP39 165 50 1.75 230 17.5 70 

DP27 145 68 1.5 330 20 110 

DP11 145 68 1.5 330 15 30 

DP1 145 32 1.5 230 15 30 

DP15 145 68 2 330 15 110 

DP21 145 32 2 230 20 30 

DP7 145 68 2 230 15 30 

DP12 185 68 1.5 330 15 110 

DP30 185 32 2 330 20 30 

DP52 165 50 1.75 280 17.5 70 

DP3 145 68 1.5 230 15 110 

DP26 185 32 1.5 330 20 110 

DP2 185 32 1.5 230 15 110 

DP45 165 50 1.75 280 17.5 70 

DP49 165 50 1.75 280 17.5 70 

DP20 185 68 1.5 230 20 110 

DP47 165 50 1.75 280 17.5 70 

DP17 145 32 1.5 230 20 110 

DP53 165 50 1.75 280 17.5 70 

DP34 185 50 1.75 280 17.5 70 

DP4 185 68 1.5 230 15 30 

DP38 165 50 2 280 17.5 70 

DP29 145 32 2 330 20 110 

DP16 185 68 2 330 15 30 

DP32 185 68 2 330 20 110 

DP5 145 32 2 230 15 110 

 

IV. PROCESS MODELING USING 

STATISTICAL APPROACH [23] 
Utilizing MINITAB Statistical software 

version 16 the mathematical models are developed  

for all the quality characteristics using stepwise 

regression analysis which eliminates the 

insignificant model terms automatically with 

stepwise selection of terms α to enter = 0.15, α to 

remove = 0.15. The method is dealt by 

Douglas.C.Montogomory [18]. Considering linear, 

square and 2 way interactions the following 

response equations are developed for each quality 

characteristics.  

FW = 2.52 + 0.5874D - 0.1510A - 45.68T -

 0.15951P + 3.254M - 0.05035R - 0.002193D
2 

+ 0.001440A
2
 +  13.146T

2 
+ 0.000028 P

2
 – 

0.07074M
2 

- 0.000099R
2
 + 0.000150DA 

+ 0.02667DT + 0.000447DP - 0.001877DM -  

0.01595AT -  0.000032AP + 0.001905AM -

 0.000223AR + 0.018494TP - 0.4564TM -

 0.012805TR +  0.000684PM + 0.000280PR 

+ 0.000854MR 

FH = - 2.474 - 0.01388D + 0.03874A - 5.761T 

+ 0.04493P + 0.1652M - 0.03681R – 0.000284A
2 

+ 2.128T
2
 - 0.000102P

2 
+ 0.000071R

2 
-

 0.000047DA - 0.003188DT + 0.000101DP - 

0.000584DM + 0.000024DR - 0.001215AT -

 0.000424AM + 0.000087AR - 0.002625TP -

 0.01325TM - 0.001062 TR - 0.000161PM 

+ 0.000064PR + 0.000095MR 

 

BW = - 9.90 + 0.1653D - 0.0272A - 10.78T -

 0.04756P + 2.975M - 0.10527R - 0.000710D
2
 

+ 0.000578A
2 

+ 1.517T
2
 -  0.000054P

2
 - 

0.09523M
2 

+ 0.000278R
2
- 0.000246DA 

+ 0.01608DT + 0.000178DP + 0.000107 DR -

 0.000084AP + 0.001977AM + 0.000067AR 

+ 0.012856TP - 0.00432TR + 0.000946PM 

+ 0.000123PR + 0.000855MR 

BH = 11.38 - 0.1005D - 0.06271A + 5.32T - 

0.05544P + 0.310M + 0.02810R + 0.000307D
2 

+ 0.000445A
2
 - 2.615 T

2
 +  0.000046P

2
 -
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 0.02395M
2
 - 0.000108R

2
 - 0.000183DA 

+ 0.000018DP + 0.000792DM - 0.000073DR 

+ 0.000091AP + 0.001536AM - 0.000093AR +  

0.007494TP + 0.08512TM + 0.000852TR 

+ 0.000504PM - 0.000005PR  + 0.000220MR 

 

 

 

 

 

V. MODELING OF TIG WELDING 

PROCESS USING ARTIFICIAL 

NEURAL NETWORKS 

 

Figure2: Forward and reverse TIG welding process modeling. 

 

Artificial neural network (ANN) is one of 

the computational based artificial intelligence 

techniques (AI) that copies the behavior of human 

brain. It has the self learning capability, adaptation 

characteristic and is basically non linear in nature. 

Hence   ANN is applied as an excellent tool for 

handling complex non linear engineering processes 

by R.J.Praga-Alejo, L.M.Torres-Trevino, and 

M.R.Pina-Monarrez [13] Development of ANN 

consists of 5 basic steps 1) collecting data 2) 

preprocessing data 3) creating the network 4) 

training the network 5) simulate the network 

response to new inputs.  As stated by Rakesh 

Malviya,and Dilip Kumar Pratihar [19], in order to 

automate any process, knowing input-output 

relation ships both in reverse and forward direction 

is required, on line.  

  

5.1 Forward modeling- Feed forward back 

propagation neural network (FFBPNN) 

The most common and successful ANN 

architecture with feed forward network topology is 

multilayer perceptron (MLP).Multilayer back 

propagation algorithm (FFBP) is the most common 

supervised learning technique used for training 

ANNs. FFBP network minimizes the errors 

between obtained outputs and desired target values 

by feeding back the derivatives of network error 

with respect to networks and adjusting the weights 

so that the error decreases with each iteration and 

the ANN model gets closer and closer to the 

desired target values. 212 input and output data 

obtained as a result of the real experimentation is 

utilized for training and testing of the neural 

networks. For training both  the back propagation  

neural networks    in forward and reverse modeling, 

the training parameters utilized are goal-

0,min_grad--1 x 10
-7

,max_fail-6,mu-

0.001,mu_dec-0.1,mu_inc-10, mu-max—1 x 10
10

 

and 1000 epochs. Neural network tool box of 

MATLAB R2013a was utilized for the whole 

modeling process. 

In this research work, preprocessing was 

done to scale the inputs and targets to fall within a 

specified range (-1 to +1 ) by using minmax 

technique so that accuracy of subsequent numeric 

computation enhances by avoiding effect of high 

valued variables on lower magnitude variable  

during training. Creating the network means 

finalizing the number of layers and the number of 

neurons in hidden layer. S.C Juang et al.[3] have 

found that  many researchers have confirmed 

experimentally that single hidden layer is sufficient 

to provide better convergence in the modeling of 

TIG welding process, in the present research work 

a three layer feed forward neural network 

architecture consisting of six input, four output 

neurons and  a hidden layer is utilized. During the 

network construction, the data set was divided into 

training, validation and test data in proportion of 

0.7, 0.15 and 0.15respectively. For gradient 

computation and weights & bias updating, training 

set was used. For improving generalization, 

validation set and for validating the network 

performance, test set was utilized. The selection of 

data in each set is done randomly and then the 

network was created .As the finalization of number 

of neurons in the hidden layer is crucial for 

efficient modeling as found by Ill-Soo Kim et al 

[20] six data selected randomly, are utilized for 
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calculating simulating error of each architecture 

during the finalization of neurons in hidden layer 

and remaining 6 data are used in calculating 

absolute % of prediction error (APPE) for the 

model finalized through comprehensive method. a 

comprehensive methodology is adopted. Out of 212 

data, 200 data has been utilized for the modeling. 

During finalization of architecture, the conducted 

parametric analysis is shown in Table 1. During the 

parametric  

analysis, trainlm, learngdm and mse are used as 

training; adaptation learning and performance 

function respectively. Tan sigmoid was used as 

transfer function for hidden and output layers. Five 

trainings were conducted and the architecture with 

minimum mean square error (MSE) with minimum 

percentage of simulation error was chosen to avoid 

over fitting.  

The analysis of the table 2 yielded the final 

architecture for forward mapping as 6-20-4. This 

architecture was again trained using 12 different 

back propagation training algorithms to select an 

efficient algorithm for training the ANN. Then 

afterwards, various transfer functions and 

adaptation learning algorithms are considered for 

creating the network. The neural model with best 

prediction capacity having Pearson Correlation 

Coefficients above 0.98 for the training, validation 

and test sets was taken as performance criteria. The 

analysis is shown in table 3, 4 and 5 respectively. 

  

Table2: Parametric analysis for architecture finalization 

 

 

 

 

 

 

 

Analysis of above table yielded a neural network as 

shown in Figure 3. It is a feed forward back 

propagation network of 6-20-4 neuron 

configuration with a Lavenberg-Marquardt training 

algorithm (trainlm), gradient descent BP with 

momentum as adoptive learning algorithm 

(traingdm) and tan-sigmoid (tan-sig) as transfer 

function for both hidden & output layers. The 

Levenberg-Marquard approximation algorithm was 

found to be the best fit for application. Similar 

results found in literature by P.Sreeraj, T.kannan, 

and S.Maji [21] 

 

Architecture MSE 
%Simulating 

error 

Average 
absolute 

error 

Architecture MSE 
%Simulating 

error 

Average 
absolute 

error 

6--5—4 

0.0359 2.8489 

7.34745 6--20--4 

0.00187 0.4841 

0.6655075 

0.0396 17.786 0.0017 1.16 

0.0371 -7.5426 0.00177 -0.1033 

0.0393 -1.2123 0.00188 -0.91463 

0.0378  0.00168  

6--10—4 

0.00947 -0.4169 

2.07601 6--25--4 

0.0019 0.49815 

0.80853 

0.0109 -4.365 0.00176 1.72026 

0.011 -0.2814 0.0019 -0.18139 

0.00845 3.2407 0.00203 -0.83432 

0.00823  0.00184  

6--15--4 

0.00203 -1.2439 

1.6248 

    

0.00226 4.564     

0.00215 0.02723     

0.00239 0.66417     

0.00222      
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Figure 3: Configuration of back propagation neural network   for forward modeling of TIG weldin

 

5.2 Reverse modeling- Feed forward back 

propagation neural network (FFBPNN) 

 

Following the similar procedure as that of forward 

modeling, reverse modeling is performed. The 

finalized architecture is a feed forward back 

propagation network of 4-20-6 neuron 

configuration with a Lavenberg-Marquardt training 

algorithm (trainlm), gradient descent BP with 

momentum as adoptive learning algorithm 

(traingdm) and tan-sigmoid (tan-sig) as transfer 

function for both hidden & output layers.  

 

 

6 ELMAN’S BACK PROPAGTION 

NEURAL NETWORK (EBPNN) 

Jeffrey Elman proposed this network. It is a neural 

network with semi recursive character which 

recognizes patterns from a sequence of values by 

back propagation through time learning algorithm. 

It is basically a recurrent neural network that 

enables sequential learning and identification of 

patterns in series of values or events that unfold 

over time and can be predicted. Elman’s neural 

network consists of a recurrent first layer opposed 

to a conventional two layer network. Values from a 

previous step can be stored as context and used in 

the current time step. The stored information can be 

used in future and this enables temporal and spatial 

pattern learning. Following the similar procedure as 

that of earlier back propagation neural network 

generation, Elman’s back propagation neural 

networks are generated both for forward and 

reverse modeling. During network finalization with 

respect to various training & adaptation learning 

algorithms and transfer functions, mean square 

error (MSE) is used as the performance criteria. 

 

6.1 Forward modeling (EBP) 

Finalized network is Elman back propagation 

network of 6-25-4 neuron configuration with a 

Lavenberg-Marquardt training algorithm (trainlm), 

gradient descent BP with momentum as adoptive 

learning algorithm (traingdm) and log-sigmoid 

(log-sig) as transfer function for hidden & pure lin 

for output layer as shown in Figure 4. 

6.2 Reversed modeling (EBP) 

The analysis yielded the final architecture for 

reverse mapping as 4-25-6. This architecture was 

again trained using different learning algorithms, 

transfer functions and training algorithms Finalized 

network is Elman back propagation network of 4-

25-6 neuron configuration with a Lavenberg-

Marquardt training algorithm (trainlm), gradient 

descent BP with momentum as adoptive learning 

algorithm (traingdm) and log-sigmoid ( log-sig) as 

transfer function for hidden &  pure lin for output 

layer. 
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Figure 4: Configuration of Elman back propagation 

neural network for forward modeling of TIG 

welding    

  

 

7 RESULTS AND DISCUSIONS 

Forward and reverse modeling of TIG welding of 

aluminum alloy AA5083: H111 have been carried 

out using the artificial neural networks developed 

through FFBP and EBP. Results of the modeling 

are stated and discussed below. 

7.1 Results of forward modeling 

Once the networks are trained with the finalized 

parameters, algorithms and transfer functions, the 

networks are simulated with six unused data, 

network outputs are noted and the predicted vs. the 

actual plots for all the four quality characteristics 

FW, BW, FH, and BH are drawn  respectively. The 

entire predicted vs. actual plots give an indication 

that the models developed are adequate as points 

are scattered randomly and closure to the 45 degree 

line as shown in Figure 6 
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Fig 5 :  predicted vs. the actual values plots for all 

the four quality characteristics FW, FH, BW, and 

BH respectively (BPNN) 

 

 

Then the absolute percentage of prediction error 

(APPE) is calculated for the simulated results and 

compared with corresponding RSM statistical 

model results and the comparison is shown in table 

6. The analysis of the table reveals that the both 

back propagation neural networks predict the 

results accurately. The percentage of prediction 

errors found in FFBP is smaller than that of EBP. 

And the performance of both the neural networks 

found to be better than that of statistical method in 

three quality characteristics except front height. 

Experimental errors and measurement errors could 

be the reason in case of front height.    

 

 

Table 6: Comparison of APPE for FFBP and EBP 

forward modeling of welding process 

FW FH 

Experimental RSM EBPP FFBP Experimental RSM EBPP FFBP 

11.12 11.035 11.043 11.0618 -1.31 -1.316 -1.346 -1.35 

11.42 11.519 11.52 11.5282 -1.38 -1.351 -1.34 
-

1.354 

11.28 11.274 11.24 11.2348 -1.64 -1.611 -1.611 
-

1.594 

11.22 11.173 11.2 11.1985 -1.05 -1.048 -1.06 
-

1.052 

11.58 11.519 11.52 11.5282 -1.36 -1.3509 -1.34 
-

1.354 

11.91 11.982 11.89 11.8943 -1.68 -1.6749 -1.656 
-

1.651 

APPE 0.54% 0.46% 0.44% APPE 1.40625 1.8728 1.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

BW BH 

Experimental RSM EBPP FFBP Experimental RSM EBPP FFBP 

9.26 9.217 9.246 9.2374 1.96 1.9713 1.924 1.917 

9.92 9.977 9.991 9.9522 2.08 2.083 2.102 2.081 

9.27 9.292 9.26 9.2456 2.21 2.1793 2.229 2.255 

9.01 9.106 9.015 9.0158 1.7 1.75 1.73 1.729 

9.96 9.977 9.991 9.9522 2.08 2.15 2.102 2.081 

10.13 10.09 10.15 10.181 2.24 2.2368 2.282 2.242 

APPE 0.48 0.253 0.2466 APPE 1.4266 1.405 1.013 
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  Fig 6   predicted vs. the actual values plots for all 

the four quality characteristics FW, FH, BW, and 

BH respectively (EBPNN) 

  

7.2 Reverse modeling results 

On the same lines as that of forward modeling, 

following results are obtained for reverse modeling 

and are depicted in 

Figure 7 and Figure 8 respectively for FFBPNN and EBPNN 

Table 7: Comparison of APPE for FFBP and EBP 

reverse modeling of welding process. 

Current % Balance Gap 

actual BPNN EBP actual BPNN EBP actual BPNN EBP 

165 183.29 184.96 50 45.855 62.4542 1.75 1.7542559 1.6284 

165 162.97 158.8 50 52.5567 44.049 1.75 1.7791983 1.7357 

185 184.91 179.954 68 56.2772 51.2951 1.5 1.7613236 1.6059 

185 185 184.998 68 67.8162 67.9879 1.5 1.622845 1.9578 

145 180.98 145.212 68 66.5043 52.4638 1.5 1.7131567 1.6093 

165 163.56 164.8 50 52.0795 56.6171 1.75 1.7818084 1.7612 

APPE 6.3417 3.141769 APPE 6.212 16.2459 APPE 7.2585 8.8787 

 

Speed Gas flow rate Frequency 

actual BPNN EBP actual BPNN EBP actual BPNN EBP 

280 305.03 249.988 15 15.3171 16.5187 70 74.909148 38.2077 

280 271.23 275.753 17.5 17.6578 18.1394 70 67.746647 70.945 

330 330 257.977 20 16.3975 16.6112 30 31.483593 77.6979 

330 330 329.703 15 15.0151 15.3297 110 107.78938 109.098 

230 230 235.849 15 18.3615 18.9418 110 109.27331 108.44 

280 272.86 276.815 17.5 17.4879 18.0923 70 65.085587 69.4436 

APPE 2.437 6.305 APPE 7.268 10.43 APPE 4.1447 34.798 

 

Analysis of the table 7 reveals that absolute 

percentage error of prediction of both networks 

found accurate enough except frequency prediction, 

which was slightly out of limit. BPNN found better 

than EBP in prediction of five characteristics 

except current. And also comparisons of forward 

and reverse modeling found that the forward 

modeling accuracy was far better than that of the 

reverse modeling. 

8 CONFIRMATION EXPERIMENTS 

RUNS (FORWARD MODELING) 

Using composite desirability approach, optimal 

parameter setting obtained was current 145 A,% 

balance 37.0909,gap of 1.6667 mm, welding speed 

of 330 mm/min,20 L/min gas flow rate and 

38.0808 Hz frequency. And the optimal setting 

yielded the experimental results which were 

compared with that predicted by FFBP and EBP 

forward modeling approaches and the results are 

shown in table 8 with absolute percentage 

prediction error(APPE) as evaluation criteria. 

Accuracy of prediction found better in FFBP 

network in most cases than RSM and EBP 

approaches.  

 

Table 8: Comparison of APPE for FFBP and EBP 

forward modeling at optimum condition 
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Fig 7:   predicted vs. the actual values plots for all 

the four quality characteristics FW, FH, BW, and 

BH respectively 

(FFBPNN) 

FW FH 

Expmtl. RSM FFBP EBP Expmtl RSM FFBP EBP 

9.93 9.21 10.0261 9.7291 -1.48 -1.6 -1.5616 -1.5743 

APPE 7.81% 0.95% 2.06% APPE 7.50% 5.23% 5.99% 

BW BH 

Expmtl RSM FFBP EBP Expmtl RSM FFBP EBP 

8.22 8.83 8.514 8.6243 1.58 1.68 1.4655 1.5695 

APPE 6.90% 3.40% 4.68% APPE 5.95% 7.80% 0.67% 



Suneel RamachandraJoshi  Int. Journal of Engineering Research and Application        www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 5, ( Part -7) may2016, pp.98-111 
 

 www.ijera.com                                                                                                                                   109 | P a g e  

Fig 8: predicted vs. the actual values plots for all 

the four quality characteristics FW, FH, BW, and 

BH respectively 

                      (EBPNN) 

 

9 CONCLUSIONS 

 

 

 

The present work proposes two artificial 

intelligence techniques, feed forward back 

propagation and Elman’s back propagation 

artificial  neural network as effective  methods of 

conducting both  forward and reverse modeling of 

TIG welding process of aluminum alloy 

AA5083:H111 to enable the automation of the 

process.  The prediction results found in this work 

are in good agreement with the actual 

measurements with low absolute percentage of 

error performance index. The good results indicate 

that both the artificial neural networks are capable 

of accurately modeling weld bead geometry. The 

construction, training and simulating process of 

theses ANN models was very complicated so as the 

architecture finalization. A comprehensive way 

adopted in this work was to use some trail and error 

method and thoroughly understand the theory of 

back propagation for designing the neural networks 

efficiently to generate accurate predicting results. 

Both the approaches found to have more adoptive 

nature than the statistical approach which may be 

due to their ability to carry out interpolation within 

the parameter ranges. Both the neural network 

models found to possess better predictive ability 

than the step wise regression analysis based 

statistical approach. These two ANNs were found 

to be viable methods of predicting the parameters 

in both forward and reverse modeling as their 

accuracy has been tested by the comparison of the 

simulated results with that of the real experimental 

data of TIG welding process. Modeling by BPNN 

found to be more accurate in more cases in both 

reverse and forward modeling than EBP. 

Confirmation test during forward modeling 

emphasizes this superiority. Prediction accuracy in 

forward modeling found to be more than reverse 

modeling in both neural networks. Similar results 
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are found by many authors in literature like Billy 

Chan ,Jack Pacey, and Malcolm Bibby [22] 
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